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SUGAR ENOLONES, VIII ! ).

A FACILE PREPARATION OF DEOXYHEXOSIDULOSES AND DEOXYHEXOSIDES
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The structural features inherent in pyranoid enolones of type 1 and 11 promise high synthetic
potential for the preparation of 4-deoxy~ and 2-deoxy-sugars functionalized via the carbonyl
group at C-2 and C-4, respectively, hence providing access to a variety of deoxy-, amino—

and branched—-chain sugars. A series of these sugar enoclones now being readily accessible1_4) '
we have exploited their synthetic utility along this vein and here, firstly, describe a facile
preparation of deoxy-hexosiduloses and deoxyhexosides via hydrogen and/or hydride addition.

In the 3,4-enolone l” the enolic double bond can readily be saturated without affecting the

carbonyl group, e.g. by hydrogenation over P4/C in methanol/ethyl acetate. The resulting 3:1
mixture (NVR) of erythro-2-deoxyhexosid-4-ulose 2 [syrup, [a], +230%; 2,4-DNP: m.p. 192 - 194°,
[a]p, +815° (c 0.5)]°) and the threo-4-uloside 3 [m.p. 88 - 89°, []y +127° 2,4-: m.p.

157 - 159°, [o], -372° (e 0.3)%)] were separated on silica gel. The yield on 2, however, did
not exceed 33 § due to its tendency to rearrange on longer standing or during chromatography
to the isameric erythro-3-uloside 4 [m.p. 174 - 176°, [a], +195% 2,4-DNP: m.p. 186°, [a]
+243°], isolable in yields of up to 10 % on separation of 2 and 3 on silica gel colums. In
contrast, the threo epimer 3 is entirely unaffected by silica gel.
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“The conversion 2 + 4 is not without analogy7’8) and may be rationalized on the basis of an acid-

catalyzed 3,4-enoclization followed by an 9_3—-* 94-benzoyl migration via an enediol-orthoacid
intermediate (7 - 8) and subsequent re-kebm‘_jl..;zg;:im, as illustrated. Thereby, the skew
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conformation adopted by 2 on the basis of NMR-data (J1:2 = 5.5 and 7.0, J2'3 = 7.5 and 14 Hz),
utilization of the quasi-axial proton (H-3) for the initial enolization and the preferential
axial attachment of a proton at C-4 in the final step, reasonably account for the remarkable
stereoselectivity of the reaction as well as for the higher propensity of erythro-4-uloside

2 to undergo this :earrangerent. Apparently, in the threo isamer 3, which exists in an only

slightly distorted C —cmformaum (J = 2,0 and 4.0, J 23°= 7.0 and 12.4 Hz), the axially
14
disposed proton at C-3 is less anenable bo enolization than the quasi-axial H~3 in 2.
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Saturation of the carbonyl group in hexulosides 2 - 4 by l?t/H2 and subsequent debenzoylation
yields 2~deoxyhexosides in distinctly varying degrees of stereoselectivity. Hydrogenation of
threo-4-uloside 3 proceeded essentially stereospecific to the 2-deoxyarabinoside § [m p. 89 -
[a] +134° (water) ), isol. yield: 69 %] only a trace of the lyxzo epimer bemg detect—
able 0 e erythro—‘i-uloside 4 afforded a 3:2 mixture'®) of the 2-deoxyriboside 5 [syrup,
[_u}D +179° (c 0.5, NBOH) . 40 % upon separation on silica gel] and 6. In contrast, the
hydrogenation of erythro-4-uloside 2 proved to be rather complex yielding a mixture of all
four 2-decxyhexosides in the ratio'® of 20 (ribo) : 3 (arabino) : 2 (Iyzo) : 1 (xylo). Since
the arabino-portion cannot originate from direct saturation of the C-4 carbonyl group in 2,
but, cbviously, from the erythro-3-ulose 4, which itself gives a 3:2 mixture of 5 and g, the
relative proportions of isamers cbtained allow an assessment of the mechanisms underlying their
formation: 60 % of 2 adds hydrogen to the C~4 carbonyl group directly or to the C=C double
bond of enediol intermediates 7 or 8 (cis-addition) from the sterically less hindered 8-side
30 % of 2 is rearranged to the erythro-3~ulose 4 which is subsequently hydrogenated with a 3:2
preference for H-addition fram above, 7 % of 2 undergoes cis—addition of hydrogen to an enediol
intermediate from below (+ lyxo-portion), whilst ondy 3 % of 2 saturates the C-4 carbonyl group
fram the sterically less favored o-side (-~ xylo isamer). In accord with these rationalizations
perhydrogenation of enolone 1 using P4/C for C=C and Pt for C=0 saturation afforded after de~
benzoylation a 20 (ribo) : 12 (arabino) : 2 (lyzo) : 1 (aylo) mixture © of 2-deoxyhexosides,
from which the major products could readily be cbtained in yields of 40 (3) and 23 % (§) by
silica gel chramatography.
Sodium borchydride reduction of enolone 1 in methanol gave the same products in a 17 2 10
(8) : 1 (lyxo) : 1 (xylo) ratio 10 yet via an entirely different mechanism: preferential
addition of the hydride spec1es to the carbonyl carbon from the less hindered g-side (1 + )
is followed by an 03—-» O -benzoyl migration through orthoacid intermediate 10 to liberate the
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carbonyl group at C-3; the resulting erythro-3-uloside 4 subsequently is reduced with a 3:2
preponderance of hydride attack from above to yield 5 and §. This rationalization is proved by
the isolation of 4, in 44 % yield, on reduction of enolone 1 with the less reactive zinc
borochydride in dimethoxyethane, by the formation of a specifically C-4 deuterated 4 upon
treatment with Zn(BD,), (absence of the 9.5 Hz doublet for H-4 at § 5.56), and by the 1.6 : 1
preference of 4 for hydride addition fram the g-side on reduction with sodium borohydride.

Analogous mechanistic and steric preferences govern the hydrogen and hydride additions to
3,2-enolones, e.g. 11 and 14. In an essentially stereospecific hydrogenation (Pd/C) 11 afforded
the 4-deoxy-threo-2-uloside as its monchydrate 12b [needles of m.p. 101 - 103°, [a]2 -35.3°

(c 0.5), H-3 at & 5.22 as dd with J3 , = 6.5 and 11.0 Hz, isolated yield: 43 %], which contained
W to 20 & of uloside 12a (H-3 at § 5.77 with J3 , = 7.0 and 12.5 Hz), its progortign varying
with the solvent of recrystallization. The product 12a/12b readily undergoes 0”— O“-benzoyl
migration (12 -~ 16) and subsequent elimination of the ancmeric substiuent (16 -+ 15) on longer
standing or in contact with silica gel. Thus, the erythro-3-uloside 16 [m.p. 119 - 120°,

[e]p -57.1° (c 0.3), 8.5 Hz-d for H-1 and H-2 at 6 4.82 and 5.85] and dibenzoyl-dihydrokojic
acid 15 [m.p. 144 - 145°, [o], +124°, H-5 at 4.95 with J, . = 6.5 and 13 Hz] are cbtained in

yields of 6 and 11 % yield on purification of 12 on sili4césge.:|. colums. Nevertheless, enolone 11
can be utilized for an effective preparation of the hitherto inaccessible 4-deoxy-lyxoside 13
[syrup, 1.0 Hz-a for H-1 at § 4.75 in D,0; tris—p-nitrcbenzoate: m.p. 142°, [a], -108°%, 69 %],
since on perhydrogenation, employing Pd/C for C=C and Pt for C=O saturation, the side reactions
of the intermediate ulose 12 are suppressed to give an essentially stereospecific H-addition to

the carbonyl group fram the a~-side, i.e. a 26 : 1 mixture (glc) of 13 and its xylo epimer 17.
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Considerably less stereoselective proved to be the NaBH4—reducti_m of 11 affordinga 3 : 1 : 1:1
mixture of four products (glc), from which the major, lyxoside 13, and the highly crystalline

") were isolable in yields of 40 and 13 %, respectively. Since on NaBD,-reduction
of 11 no deuterium was incorporated into the C-4 position of either 13 or 17 (NMR), the conver-
sion camprises an initial hydride addition to the carbonyl group with a 2 : 1 preference for
attack fram the a-side — not unexpected from the steric course of hydride reductions of other
methyl 8-D—glyoosid—2-ulos¢s12); the respective intemmediates then undergo an 93—> _Qz-benzoyl
shift to 16 (minor product) and the C~2-epimeric threo-3-uloside (major), of which the C-3
carbonyl functions are again reduced with preference of hydride addition from the less-

hindered o-side'>).
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As in the 3,4-enolone case (1 » 4), zinc borchydride reduction was less camprehensive, the
g-enolone 1] giving a mixture of 16, 13 and two other products (tlc), whilst a—enolone 14
afforded an approximate 1 : 1 mixture (tlc) of an unstable tribenzoyl-4-deoxy-ulose of
amceivable a~D~erythro configuration and 15, from which the latter is isolable in good yield.

The forégoing results suggest oconsiderable potential of sugar enolones for a specific access
not only to various branched chain and deoxy-amino-sugars — Michael and Grignard type additions
as well as reduction of ulose-oximes should exhibit the same or at least very similar stereo-
selectivities — but, given the availability of erythro-3-uloside 2 from enolone 1, also to key
intermediates for the synthesis of thramboxane B type natural products'®). These and other
aspects of the chemistry of stgar enolones are presently under investigation.
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